2,004 research outputs found

    On the nature of prominence emission observed by SDO/AIA

    Full text link
    The Prominence-Corona Transition Region (PCTR) plays a key role in the thermal and pressure equilibrium of solar prominences. Our knowledge of this interface is limited and several major issues remain open, including the thermal structure and, in particular, the maximum temperature of the detectable plasma. The high signal-to-noise ratio of images obtained by the Atmospheric Imaging Assembly (AIA) on NASA's Solar Dynamics Observatory clearly show that prominences are often seen in emission in the 171 and 131 bands. We investigate the temperature sensitivity of these AIA bands for prominence observation, in order to infer the temperature content in an effort to explain the emission. Using the CHIANTI atomic database and previously determined prominence differential emission measure distributions, we build synthetic spectra to establish the main emission-line contributors in the AIA bands. We find that the Fe IX line always dominates the 171 band, even in the absence of plasma at > 10^6 K temperatures, while the 131 band is dominated by Fe VIII. We conclude that the PCTR has sufficient plasma emitting at > 4 10^5 K to be detected by AIA.Comment: accepted Ap

    Subtraction of test mass angular noise in the LISA Technology Package interferometer

    Full text link
    We present recent sensitivity measurements of the LISA Technology Package interferometer with articulated mirrors as test masses, actuated by piezo-electric transducers. The required longitudinal displacement resolution of 9 pm/sqrt[Hz] above 3 mHz has been demonstrated with an angular noise that corresponds to the expected in on-orbit operation. The excess noise contribution of this test mass jitter onto the sensitive displacement readout was completely subtracted by fitting the angular interferometric data streams to the longitudinal displacement measurement. Thus, this cross-coupling constitutes no limitation to the required performance of the LISA Technology Package interferometry.Comment: Applied Physics B - Lasers and Optics (2008

    Small scale lateral superlattices in two-dimensional electron gases prepared by diblock copolymer masks

    Full text link
    A poly(styrene-block-methylmethacrylate) diblock copolymer in the hexagonal cylindrical phase has been used as a mask for preparing a periodic gate on top of a Ga[Al]As-heterostructure. A superlattice period of 43 nm could be imposed onto the two-dimensional electron gas. Transport measurements show a characteristic positive magnetoresistance around zero magnetic field which we interpret as a signature of electron motion guided by the superlattice potential.Comment: 3 pages, 3 figure

    Electronic properties of quantum dots formed by magnetic double barriers in quantum wires

    Full text link
    The transport through a quantum wire exposed to two magnetic spikes in series is modeled. We demonstrate that quantum dots can be formed this way which couple to the leads via magnetic barriers. Conceptually, all quantum dot states are accessible by transport experiments. The simulations show Breit-Wigner resonances in the closed regime, while Fano resonances appear as soon as one open transmission channel is present. The system allows to tune the dot's confinement potential from sub-parabolic to superparabolic by experimentally accessible parameters.Comment: 5 pages, 5 figure

    Transport properties of quantum dots with hard walls

    Full text link
    Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation with an atomic force microscope. This technique, in combination with top gate voltages, allows us to generate steep walls at the confining edges and small lateral depletion lengths. The confinement is characterized by low-temperature magnetotransport measurements, from which the dots' energy spectrum is reconstructed. We find that in small dots, the addition spectrum can qualitatively be described within a Fock-Darwin model. For a quantitative analysis, however, a hard-wall confinement has to be considered. In large dots, the energy level spectrum deviates even qualitatively from a Fock-Darwin model. The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure

    In-plane gate single-electron transistor in Ga[Al]As fabricated by scanning probe lithography

    Full text link
    A single-electron transistor has been realized in a Ga[Al]As heterostructure by oxidizing lines in the GaAs cap layer with an atomic force microscope. The oxide lines define the boundaries of the quantum dot, the in-plane gate electrodes, and the contacts of the dot to source and drain. Both the number of electrons in the dot as well as its coupling to the leads can be tuned with an additional, homogeneous top gate electrode. Pronounced Coulomb blockade oscillations are observed as a function of voltages applied to different gates. We find that, for positive top-gate voltages, the lithographic pattern is transferred with high accuracy to the electron gas. Furthermore, the dot shape does not change significantly when in-plane voltages are tuned.Comment: 4 pages, 3 figure

    Transport properties of quantum dots with hard walls

    Full text link
    Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation with an atomic force microscope. This technique, in combination with top gate voltages, allows us to generate steep walls at the confining edges and small lateral depletion lengths. The confinement is characterized by low-temperature magnetotransport measurements, from which the dots' energy spectrum is reconstructed. We find that in small dots, the addition spectrum can qualitatively be described within a Fock-Darwin model. For a quantitative analysis, however, a hard-wall confinement has to be considered. In large dots, the energy level spectrum deviates even qualitatively from a Fock-Darwin model. The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure
    corecore